Heisenberg's Uncertainty Principle

We define the $\mathit{uncertainty}\ \Delta_{\psi} A$ in a measurement of A on the state ψ by

$$(\Delta_{\psi}A)^{2} = \langle (A - \langle A \rangle_{\psi})^{2} \rangle_{\psi}$$

= $\langle A^{2} \rangle_{\psi} - (\langle A \rangle_{\psi})^{2}$. (6.21)

Note that Theorem 1 implies that the expectation value and the uncertainty are always real, as we would expect if they are physically meaningful.

We can easily verify that $(\Delta_{\psi}A)^2$ is the statistical variance of the probability distribution for the possible outcomes of the measurement of A on ψ , and $\Delta_{\psi}A$ is the distribution's standard deviation.

We can verify this directly for operators with discrete eigenvalues, and also for position. We take it as a definition (which can be justified with more work) for general operators.

Tuill
put
this
slide
up