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So, for any spherically symmetric potential V(r), we have that

2
2R = [ V2 4 V()]
= 0, (7.49)
[(2,A] = 0. (7.50)

In other words, I:I, [; and [2 all commute with one another.

This is an important and powerful result. Given any 3D
quantum system, we can find a basis of simultaneous
eigenfunctions of H, L? and Ls.



Orbital Angular Momentum

We can translate the definitions of L; to spherical polars. We have

X1 = rsinfcos o,

xp =rsinfsing,

(1 6,9)

x3=rcosf. (7.51)



Orbital Angular Momentum

We can translate the definitions of L; to spherical polars. We have
x] = rsinf cos ¢, Xo = rsinfsin ¢, x3=rcosf. (7.51)

Thus

ox; 0
Z 00 0x;



Orbital Angular Momentum

We can translate the definitions of L; to spherical polars. We have
x] = rsinf cos ¢, Xo = rsinfsin ¢, x3=rcosf. (7.51)

Thus
0 ox; 0
00 Zae Ox;
0 0

= rcos@cos¢ai1 + rcos@sin ¢8—X2 — rsin 98—X3Q7.52)




Orbital Angular Momentum

We can translate the definitions of L; to spherical polars. We have
x] = rsinf cos ¢, Xo = rsinfsin ¢, x3=rcosf. (7.51)

Thus
0 ox; 0
0 Z 00 dx;
= rcos@cos¢i + rcos@sin ¢i — rsin eigmz)

Ox X1 8X2 3X3
0 ox; O
9o Z 0 Ox;




Orbital Angular Momentum

We can translate the definitions of L; to spherical polars. We have
x] = rsinf cos ¢, Xo = rsinfsin ¢, x3=rcosf. (7.51)

Thus
% B Z ?9); Ox;
= rcosf cos ¢3i1 + rcosfsin ¢8ix2 — rsin 9({%3@7.52)
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We thus obtain

. o . 0 — 0
/h(cos¢cot98—¢ + sin ¢%) = _’h(X28—X3 T B %
. (7.54)
o ) 0 . 0 0
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— Iy, (7.55)
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We can also obtain
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We can also obtain
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Recall that [[2, [3] = 0. We have

[2 = —h(— (su19

9n939
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1 92
sin2 0 02’
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(7.58)
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Recall that [[2, [3] = 0. We have
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Recall that [[2, [3] = 0. We have

n 1
2 32 _—

L = h(5|n980(5|n9 )+

A 0

L3 = _Ih8_¢

sin2 0 02’

We can thus seek simultaneous eigenfunctions of the form
Y (0) exp(im@), since Lz exp(im¢) = hmexp(im¢). As ¢ is defined

modulo 27, we need eM(@+2m) — gim¢ oq oi2mm

integer.

=1 and mis an
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This leaves us with an eigenvalue equation for [?:

1 d m?

—R(———(sinf _
(S|n9d9(sm d9) sin29)

Y(8) = \Y(8). (7.59)

From a physics perspective, the key fact about this equation is
that we can show it has non-singular solutions if and only if

A = h2I(I + 1) for some integers / > 0 and for m in the range
—I<m</.

~
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The solutions are called the associated Legendre functions Pj m(0).
They can be obtained by reducing the equation to a standard form,
using the substitution w = cos6.Since 6 is in the range 0 < 0 < T,
we have —1 < w < 1. We obtain the equation

dY m?

R w) )

)Y = 0. (7.60)

For m =0 and A\ = A%/(/ + 1) this is Legendre's differential
equation for functions of degree /, which has solution P;(w). For
general m it's an associated Legendre differential equation.

The associated Legendre functions can be obtained from the
Legendre polynomials P; by

d!ml
(cos §)Im|

(up to normalisation. Note that the solutions for -m are proportional to those for m, for given |.)

Pr.m(0) = (sing)l™ - Py(cos ). (7.61)
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We thus have the overall solution given by the spherical harmonic
with total angular momentum quantum number | and L3 quantum
number m:

Y/,m(97 P) = Pl,m(e) exp(ime) ,

an eigenfunction of [2 and L3 with eigenvalues #2/(/ + 1) and hm
respectively.

For plots of some spherical harmonics see e.g.

mathworld.wolfram.com /SphericalHarmonic.html. ":
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Solving the 3D Schrodinger equation for a spherically
symmetric potential
The time-independent SE is

2
—h—v% + V(r)y = Ey. (7.62)
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The time-independent SE is

h2
- 2M

Recall that in spherical polar coordinates

2 _ 10,0 1 0 0

ﬁ@r( 3r)+r25|n080( 00

— V%) + V(r)p = Ey.

sinf—) +

(7.62)
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Solving the 3D Schrodinger equation for a spherically
symmetric potential
The time-independent SE is

h2

2
2MV v+ V(r)y = Ev. (7.62)

Recall that in spherical polar coordinates

19,,0 1 9 %) 1 0?
2 = 2 _
Ve o= r2 E?r( E?r) + r25|n089(5m989) i r2 sin 6 O¢?
. 1 02
> = - .
h (sm939(5m0 )+ sin ¢ 3¢2) (7.63)
So we have
2
—R°V? = —h2(a— 42 0 lL2 (7.64)
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We can thus rewrite the SE as
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(7.65)



Solving the 3D Schrodinger equation for a spherically
symmetric potential

We can thus rewrite the SE as
2 0% 20 1~
o2t 9, ) Ty )Y 0.0)+V(nY(r.0,¢) = E¢((7f7695,)¢)-

If we separate variables, writing (r, 8, ¢) =¥ (r)Y; m(0, ¢), this
gives




Solving the 3D Schrodinger equation for a spherically
symmetric potential

We can thus rewrite the SE as

2 9% 20 1

—om'az e Tamr SL2)i(r, 0, 0)+V(r)(r,0,6) = Ev(r,0,6).

(7.65)
If we separate variables, writing (r, 8, ¢) =¥ (r)Y; m(0, ¢), this
gives
2 d? 2d

—5 T )b(r) +(

“oMVdr T rdr 2Mr 2’(’ + 1))+ V(n)elr) = Eglr).



Solving the 3D Schrodinger equation for a spherically
symmetric potential

We can thus rewrite the SE as

_h_2 8_2_|_g (9) 1
2M*Or?2  r Or 2M2

L2)(r, 0, ¢)+V (r)u(r,0,6) = EU(r,0,6).

(7.65)
If we separate variables, writing (r, 8, ¢) =¥ (r)Y; m(0, ¢), this
gives

NRY
2M dr2 rdr

DYE) + o 104 1) + V) = E(r),
(7.66)
So, we have a standard 1D radial Schrodinger equation for ¥(r),

with the modified potential V/(r) + h;%”.
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Solving the 3D Schrodinger equation for a spherically
symmetric potential

Comment: If the angular momentum / = 0 then also m = 0,
and the function Ygo(6, ¢) is constant. Thus all zero angular
momentum states are spherically symmetric. 2:0)=

iju/(n VW) - CC 0O~ )
Conversely, since the Y, for | # 0 are orthogonal to Yo, all
spherically symmetric states have zero angular momentum.

This makes sense physically, since a state ¢ with (L), # 0 by
definition has a nonzero vector associated with it, which breaks
spherical symmetry.

CL
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Degeneracies

e
B W(dﬂ rdr)w(r)+(

2
Mr?

s 41)) -+

V(r))u(r) =

Ey(r).

(7.66)

The values of E for which this equation is solvable clearly may

depend on [ but not on m.




Degeneracies

i (s 2 Y(r) + (a4 1) + V() R(r) = pal)

The values of E for which this equation is solvable clearly may
depend on / but not on m.As there are (2/ 4 1) possible values of
m, each energy level would have degeneracy (2/ + 1), assuming
there are no further degeneracies.
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The ground state (i.e. lowest energy bound state) solution of the
3D Schrodinger equation for a spherically symmetric potential
must have | = m = 0 and is thus spherically symmetric.
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Solving the 3D Schrodinger equation for a spherically
symmetric potential

The ground state (i.e. lowest energy bound state) solution of the
3D Schrodinger equation for a spherically symmetric potential
must have | = m = 0 and is thus spherically symmetric.

Proof The proof is by contradiction. Suppose that
W(r,0,¢0) = (r)Yim(8, ), for some | > 0, is the lowest energy

solution and has energy E. We have that

2 g2 2
o (S 2 EN00) (s 0 ) + V(D)) = EU(r).
(7.67)
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Solving the 3D Schrodinger equation for a spherically
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Now as I:I, [2 and [3 are commuting hermitian operators, the
space of wavefunctions is spanned by their simultaneous
eigenstates. In particular, the space of zero angular momentum
wavefunctions is spanned by orthonormal eigenstates v;(r, 0, ¢) of
H with E = E; and | = m = 0, which have the form

Yi(r 0, ¢) = ¥i(r)Yoo(8, ¢) = vi(r). (7.68)

l.e., the eigenstates ; are all spherically symmetric solutions. We
can thus write ¥(r) = > ; cjvi(r) for some constants ¢; such that

Zi |Ci‘2 = 1.
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2
- [ o) eéM‘jQ 2 u(r)

+(

I+ 1))+ V()6() (7.69)
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2
e - [ v (—2M 25

+( I(1+1)) + V(r))y(r)) (7.69)
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Solving the 3D Schrodinger equation for a spherically
symmetric potential

2
E - / (s (—2M 25
1) + V) (7.69)

2/\//2
2
- [ wo (—m% 2 L V()(r)

KA

r)) (7.70)
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symmetric potential

2 2
- [ o) (—fM 25

I+ 1) + V(A)()
2 2
- [ wo (—f—M 28 V()
#4100
2 d?> 2d

> [ v (—m 2 V)

(7.69)

(7.70)

(7.71)
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2 Nz e
E = / P (r (_2/\/1 5r2 %d%)w() il : I
(o -+ D)+ VO (7.69)
2
= [T+ 2L v
h?
[0+ D)) (7.70
2 d?> 2d
> O¢ (D=5 W+7Fr + V(r)))(r) (7.71)

> d> 2d
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Solving the 3D Schrodinger equation for a spherically
symmetric potential

Now this last term is

Z C;kC,'E,' = Z |C,'|2E,' . (7.72)

Since we have that £ > >_.|¢/|?E; and that > . |¢;|> = 1, we must
have that E > E; for at least one value of /. Hence E is not the
lowest energy eigenvalue, in contradiction to our original
assumption. W
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The Hydrogen atom

We can now obtain the general bound state solution for
2

particles in the potential V(r) = —z—.
As we did in obtaining spherically symmetric solutions, we define
the quantities a = 55 ’V}’_LQ = %ME

We obtain from Eqn. (7 66) the equation

2
2 + I+ D) + D) = Bu(r). (1.7)

P d® 2d 2
— oG T g () + (550 + D) + V(N)(r) = E(zé(gé |
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4megr’
As we did in obtaining spherically symmetric solutions, we define

_ M —2ME
the quantities a = 5= w2 D=

We obtain from Eqn. (7 66) the equation

d> 2d

g2 Tl + (—/(/ +1)+ - ) (r) = b*(r). (7.73)
As we saw in discussing Eqn. (7.26), we see that the ansatz
Y(r) ~ exp(—br) means that the two asymptotically largest terms
cancel. This again suggests trying an ansatz of the form

Y(r) = f(r)exp(—br), for a power series f(r).
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The Hydrogen atom

The new singular term (r—lzl(/ + 1)) means that the previously
obtained solutions are not generally valid.

We write the power series in the form f(r) = > >, a,r""7, where
the unknown constant o is defined so that ag # 0: i.e. the power
series begins with a term proportional to r?.

Considering the coefficient of r°=2 we have
—(o(c—1)+20)+I(I+1)=0o0r o(c+1)=I(/+ 1),which has
solutions 0 =/ and 0 = —(/ + 1). As /| > 0, we choose 0 = | to
avoid a divergence at r = 0.
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The Hydrogen atom

We now have

(n+1)2b—a
n = n—1 T > 1. 1.74
d n(n+2/+1)a Lo = ( )

As before, if the power series does not terminate this reduces to

~ 2b

ap =~ <’a,_1 for large n, which would give us f(r) ~ exp(2br) and

Y(r) ~ exp(2br) exp(—br) ~ exp(br),

a divergent and unnormalisable wavefunction, which is physically
unacceptable.
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The Hydrogen atom

The power series must thus terminate, so we have a = 2b(n + /),
for some n > 1.Thus b = 5% for some N >/ + 1, giving the same
overall set of solutions for b, and thus the same energy levels (i.e.
the Bohr energy levels), as the spherically symmetric case with

I = 0 we considered earlier:

B Me* 1
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Energy level degeneracies
Each value of N is consistent with
[=0,1,...(N—-1); (7.75)
each value of / is consistent with
m=—[—(1—-1),...,1. (7.76)

The total number of values of (m, /) consistent with N is thus

N—-1

/ N—
Z Z(2/+1)—2;N(N—1))+N:N2. (7.77)
=0 m=-— 1=0

In fact, the true degeneracy of the Nth energy level of the
hydrogen atom in a full non-relativistic quantum mechanical
treatment is 2N?: the extra factor of 2 arises from an intrinsically
quantum mechanical degree of freedom, the electron spin, which
has no direct classical analogue.
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Towards the periodic table

We could try to generalize this discussion to atoms other than
hydrogen. These have a nucleus with charge +Ze, orbited by Z
independent electrons, where the atomic number Z is an integer
greater than one.

If we take the nucleus to be fixed, as we did with hydrogen, this
means we need to solve the Schrodinger equation for Z
independent electrons in a central Coulomb potential.

This is not so simple, since the electrons also interact with each
other.

If we ignore this temporarily, we can obtain solutions of the form

w(xl,...,Xz) = wl(xl)...wz(XZ), (7.78)

where the 1); are rescaled solutions for the hydrogen atom (the
nucleus has charge +Ze instead of +e). The energy is just the sum

Z
E=> E. (7.79)
i=1
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Towards the periodic table

It turns out that for relatively small atoms this gives qualitatively
the right form, with corrections arising from the electron-electron
interactions that can be caculated using perturbation theory.
However, we also need to allow for the Pauli exclusion principle,
which implies that no two electrons in the same atom can be in
the same state.

So the lowest overall energy state is given by filling up the energy
levels in order of increasing energy, starting with the lowest.
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for the twofold degeneracy an

with a full energy level with Z =2,10=8\2,...for N =1,2,..;

these are the elements helium, neon, .... The elements with outer
electrons in the 1st and 2nd energy levels fill out the corresponding
first two rows of the periodic table.
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Towards the periodic table

Allowing for the twofold degeneracy arising from spin, as above, we

have 22 states in the Nth energy level.

This gives us an atom

with a full energy level with Z =2,10=8+2,...for N=1,2,..;

these are the elements helium, neon, ...

. The elements with outer

electrons in the 1st and 2nd energy levels fill out the corresponding
first two rows of the periodic table. The analysis gets more
complicated as atoms get larger, because electron-electron
interactions become more important, and this qualitative picture is
not adequate for the third and higher rows of the periodic table.
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