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Spherically symmetric bound states of the hydrogen atom

We model the hydrogen atom by treating the proton as infinitely
massive and at rest.

modelled as single
/ particle wave function in
;' electron, g = —e  Coulomb potential

\ proton, g\= +e ,

m_p~ 1836 m_e
so this is a pretty good
approximation

modelled by
Coulomb potential
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We model the hydrogen atom by treating the proton as infinitely
massive and at rest.

We seek spherically symmetric bound state wavefunctions #(r) for

e

the electron orbiting in a Coulomb potential V(r) =

_47T€0r:
R d%y  2dy e2
I r =z _ — E 7.24
2/\/1( dr? + r dr 47reor¢(r) (), (7.24)
for some E < 0. Writing a = 2;263/}22, b= _%ME, we have
d>y 2dy a 5
— +—— 4+ - —bY=0. 2
dr2+rdr+rw v=0 (7.25)



Spherically symmetric bound states of the hydrogen atom

d>y 2dy a 5
— +——+ - — by =0.
dr? + r dr + r¢ v

Try the ansatz

Y(r) ~ exp(—br), (7.26)
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A _
(0 e bo™ L:?Q“L(

d2p  2dy

+——+§¢—b2¢:o.

dr2 T rdr
Try the ansatz
¢(r) ~ exp(—br) )

(7.26)

The first and fourth terms dominate for large r, and cancel one

another precisely.
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P2y 2dy  a
@z T T e =l
Try the ansatz
Y(r) ~ exp(—br), (7.26)

The first and fourth terms dominate for large r, and cancel one
another precisely. This suggests trying an ansatz of the form

(r) = f(r)exp(—br), with f(r) =>_""5anr",



Spherically symmetric bound states of the hydrogen atom

P2y 2dy  a
@z T T e =l
Try the ansatz
Y(r) ~ exp(—br), (7.26)

The first and fourth terms dominate for large r, and cancel one
another precisely. This suggests trying an ansatz of the form

(r) = f(r)exp(—br), with f(FJ = > 72, anr",in the hope of
finding values of the coefficient$ a, such that the four terms cancel
precisely to all orders.

0or 4anszlg Ko /LL(/) C«r(r\'qoa/, Cf# e
B ‘P('L‘D{\ \/"/3 H-éej ?L
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R Py 24y e
2M* dr?2  r dr Areqr

(r) = Eip(r), (7.24)




Spherically symmetric bound states of the hydrogen atom

Our previous discussion assumed that V/(r) is nonsingular as

r — 0. Here V(r) — oo as r — 0, so we cannot use the previous
justification to argue that that ¢(r) = rio(r) — 0 as r — 0.
However, we still require 1(r) to define a normalisable 3D
wavefunction, so that

0< / r2[(r)|?dr < oo

=0



Spherically symmetric bound states of the hydrogen atom

Our previous discussion assumed that V/(r) is nonsingular as

r — 0. Here V(r) — oo as r — 0, so we cannot use the previous
justification to argue that that ¢(r) = rio(r) — 0 as r — 0.
However, we still require 1(r) to define a normalisable 3D
wavefunction, so that

0< / r2[(r)|?dr < oo

=0

This implies that ¥(r) = O(r~1) as r — 0, i.e. that ¢ can at
worst have a singularity of order r—! at zero.
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Our previous discussion assumed that V/(r) is nonsingular as

r — 0. Here V(r) — oo as r — 0, so we cannot use the previous
justification to argue that that ¢(r) = rio(r) — 0 as r — 0.
However, we still require 1(r) to define a normalisable 3D
wavefunction, so that

0< / r2[(r)|?dr < oo

=0

This implies that ¥(r) = O(r~1) as r — 0, i.e. that ¢ can at
worst have a singularity of order r—! at zero. We also require that
1 should correspond to a continuous wavefunction. This excludes
a singularity of order r—!, so we require that v is regular — i.e.

has a finite limit — as r — 0. —=9
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Spherically symmetric bound states of the hydrogen atom

Our previous discussion assumed that V/(r) is nonsingular as

r — 0. Here V(r) — oo as r — 0, so we cannot use the previous
justification to argue that that ¢(r) = rio(r) — 0 as r — 0.
However, we still require 1(r) to define a normalisable 3D
wavefunction, so that

0< / r2[(r)|?dr < oo
r=0

This implies that ¥(r) = O(r~1) as r — 0, i.e. that ¢ can at
worst have a singularity of order r—! at zero. We also require that
1 should correspond to a continuous wavefunction. This excludes
a singularity of order r—1, so we require that ¢ is regular — i.e.
has a finite limit — as r — 0.

Te W) = (8o )™
(ob n=et) > "



Spherically symmetric bound states of the hydrogen atom

We have

d>f 2 df 1

el — —2b)— +—(a—2b)f(r)=0. 1.27

-2+ (a2 =0, (727)
d>) 2dy a 2,
a2 trar Ty hv=0

Try the ansatz
(r) =~ exp(—br), (7.26)

The first and fourth terms dominate for large r, and cancel one
another precisely. This suggests trying an ansatz of the form

Y(r) = f(r)exp(—br), with f(r) =307 anr",
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We have

d*f
dr?

+(% —2b)3—i+%(a—2b)f(f) =0. (7.27)

Hence

Z(ann(n —1)r"% 4+ 2a,nr""2 = 2ba,nr"™t 4 (a—2b)a,r" ) =0

" N (7.28)

2
+29% 3,y —o.
r dr r

™W(r) =~ exp(—br), (7.26)
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We have

+(% —2b)3—i+%(a—2b)f(f) =0. (7.27)

d*f
dr?

Hence

Z(ann(n —1)r"% 4+ 2a,nr""2 = 2ba,nr"™t 4 (a—2b)a,r" ) =0

n=0
(7.28)

Taking the coefficient of r"~2 we have

apn(n — 1)+ 2a,n — 2ba,_1(n— 1)+ (a —2b)a,_1 =0for n > 1.
(7.29)



Spherically symmetric bound states of the hydrogen atom

This gives

(2b(n—1) — (a — 2b))
n(n—1) 4 2n

dnp — dp—-1

apn(n — 1)+ 2a,n — 2bap_1(n— 1) + (a — 2b)a,—1 =0for n > 1.
(7.29)
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This gives

(2b(n—1) — (a — 2b))
n(n—1) 4 2n

2bn — a

n(n+1)

dnp — dp—-1

(7.30)

= dn-1
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This gives
2 4 (2b(n—1) — (a — 2b))
no— ol n(n—1) 4 2n
2bn — a
= ap— . 7.
an—1 n(n T 1) ( 30)

2b

We thus have that a, — <?a,_1 for large n.
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This gives
. (2b(n—1)—(a—2b))
no— ol n(n—1) 4 2n
2bn — a
= an_lm . (730)

We thus have that a, — %’an_l for large n.

If the coefficients do not vanish for large n, this means they have
the asymptotic behaviour of the coefficients of exp(2br),

CUN: Z\/\L_c(GLLry/‘ = 2 cat

Co\ /ZL
(- “~ n
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This gives
. (2b(n—1)—(a—2b))
no— ol n(n—1) 4 2n
2bn — a
= an_lm . (730)

We thus have that a, — %’an_l for large n.

If the coefficients do not vanish for large n, this means they have

the asymptotic behaviour of the coefficients of exp(2br), i.e.
f(r) = Cexp(2br).
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This gives
. (2b(n—1)—(a—2b))
no— ol n(n—1) 4 2n
2bn — a
= an_lm . (730)

We thus have that a, — %’an_l for large n.

If the coefficients do not vanish for large n, this means they have
the asymptotic behaviour of the coefficients of exp(2br), i.e.

f(r) =~ Cexp(2br). This would give

Y(r) = Cexp(2br)exp(—br)
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This gives
. (2b(n—1)—(a—2b))
no— ol n(n—1) 4 2n
2bn — a
= an_lm . (730)

We thus have that a, — %’an_l for large n.

If the coefficients do not vanish for large n, this means they have
the asymptotic behaviour of the coefficients of exp(2br), i.e.

f(r) =~ Cexp(2br). This would give

p(r) = Cexp(2br) exp(—br) = exp(br)
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This gives
. (2b(n—1)—(a—2b))
no— ol n(n—1) 4 2n
2bn — a
= an_lm . (730)

We thus have that a, — %’an_l for large n.

If the coefficients do not vanish for large n, this means they have
the asymptotic behaviour of the coefficients of exp(2br), i.e.

f(r) =~ Cexp(2br). This would give

Y(r) = Cexp(2br)exp(—br) = exp(br) , leading to an
unnormalisable and thus unphysical wavefunction.
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This gives
. (2b(n—1)—(a—2b))
no— ol n(n—1) 4 2n
2bn — a
= an_lm . (730)

We thus have that a, — %’an_l for large n.

If the coefficients do not vanish for large n, this means they have
the asymptotic behaviour of the coefficients of exp(2br), i.e.

f(r) =~ Cexp(2br). This would give

Y(r) = Cexp(2br)exp(—br) = exp(br) , leading to an
unnormalisable and thus unphysical wavefunction. So there must
be some integer N > 1 for which apy = 0, and we can take N to be

the smallest such integer.
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Then ay_1 # 0, so that ayy = 0 implies 2bN = a or b = a/2N,

(7.30)
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Then ay_1 # 0, so that ayy = 0 implies 2bN = a or b = a/2N, and
o)

P i
SMN?
Me*
- 7.31
/ 327?26%712N2 7 ( )
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Spherically symmetric bound states of the hydrogen atom

Then ay_1 # 0, so that ayy = 0 implies 2bN = a or b = a/2N, and
o)

h2 a2
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Me*

- 7.31
327T2egh2N2 7 ( )

which is precisely the energy spectrum of the Bohr orbits,
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which is precisely the energy spectrum of the Bohr orbits, now
derived from quantum mechanics, assuming spherical symmetry.



Spherically symmetric bound states of the hydrogen atom

Then ay_1 # 0, so that ayy = 0 implies 2bN = a or b = a/2N, and
o)

h2 a2
~ 8MN2
Me*

- 7.31
327T2egh2N2 ’ ( )

which is precisely the energy spectrum of the Bohr orbits, now
derived from quantum mechanicg, assuming spherical symmetry.
(We will need to drop this assumpti
wavefunction).
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we obtain
n—N

n(n+1)"

ap = ap_12b (7.33)
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From

2bn —
a=2bN and a, = an_ln—a (7.32)
n(n+1)
we obtain N
n —_
n = an-12b : 7.33
on = an-1 n(n+1) (7.33)
This gives solutions of the form
1 N=1

f(r) =
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2bn —
a=2bN and a, = an_ln—a (7.32)
n(n+1)
we obtain N
n —_
n = an_12b : 7.
an = an—1 n(n+ 1) (7.33)
This gives solutions of the form
1 N=1,
f(r)=1< (11— br) N=2, (7.34)
(1—2br+2(br)?) N =3,



Spherically symmetric bound states of the hydrogen atom

From oh
a=2bN and a, = an_lLa (7.32)
n(n+1)
we obtain N
n —_
n=apn_12b—— . 7.
an = an—1 n(n+ 1) (7.33)
This gives solutions of the form
1 N=1,
f(r)=1< (11— br) N=2, (7.34)
(1—2br+2(br)?) N =3,

and generally f(r) = L},_,(2br) where L}, ; is one of the
associated Laguerre polynomials.
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polynomials:

L (x) = ieXx_kd—N(x e )
NAZS = NI dxN '



Spherically symmetric bound states of the hydrogen atom

*There is a simple expression for the associated Laguerre
polynomials:
1, . dV

L (x) = —e*x

Y dxN €

(XN+k —X) .

Some plots of L?V for small N and some other information about
the Laguerre polynomials (L%, for k = 0) and the associated
Laguerre polynomials can be found

at mathworld.wolfram.com /LaguerrePolynomial.html|

and at

mathworld.wolfram.com /AssociatedLaguerrePolynomial.html| .*

Laguerre Polynomial




Spherically symmetric bound states of the hydrogen atom

*There is a simple expression for the associated Laguerre
polynomials:

N
L (x) = iexx_kd—

i€ g e,

€

Some plots of L(,)V for small N and some other information about
the Laguerre polynomials (L%, for k = 0) and the associated
Laguerre polynomials can be found

at mathworld.wolfram.com /LaguerrePolynomial.html|

and at

mathworld.wolfram.com /AssociatedLaguerrePolynomial.html| .*
The corresponding wavefunctions are

(r) = CL},_{(2br) exp(—br), where the constant C is determined
by normalisation.
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Canonical Commutation Relations in 3D

From (7.2) we have

Xi = X ( multiplication by x;), (7.35)
s,

/\i — _ .h ) 7.

p L (7.36)

By calculating the action on a general wavefunction as before, we
obtain

X, %1 = 0 = [pi Al (7.37)



Canonical Commutation Relations in 3D

From (7.2) we have

Xi = X ( multiplication by x;), (7.35)
0
aX,' .

pi = —ih

By calculating the action on a general wavefunction as before, we
obtain

0 = [ﬁl)ﬁj]
k.61 = ihé;.
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In classical mechanics we define the angular momentum vector

ST

P = €iRXiPks (7.39)
((‘:‘ S\(,L«:)V; b )(,; T‘L
and L is conserved in a spherically symmetric potential V/(r).

L=xAp,
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Orbital Angular Momentum

In classical mechanics we define the angular momentum vector
L=xANp, Li = €ijuxjpx (7.39)
and L is conserved in a spherically symmetric potential V/(r).

We define the quantum mechanical operators

~ R ~ ] 0
L=—iAR ANV, L; = —/he,-jkxja—Xk , (7.40)

and the total angular momentum

[?=0[1=03+15+13. (7.41)
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PPN . 0 . 0
[L,’, LJ] — _h2€ilm€jnp[X/ axm,Xn 8Xp

]
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0 0

[Z;,Zj] = —h2€ilm€jnp[>/<\laxma)?naxp]
0 .0 .. 0 0
— _h2€ilm€jnp([xla—xmaxn]a—xp JrXn[Xla—va (’9—xp )
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0 0

[[,‘, ZJ] = —7'_L2€i/m€jnp[)/(\/ aXm ’ )?n 8Xp]
o .0 0 9
=  —Reymeinp([F——, X =—— + K[ —— , —
— h €/Im€jnp([X/ 8xm,Xn] 8Xp + Xn[XI aXm, aXp )
— Ry eins(X]—. % — + X%, —]——
— h €/lm€JnP(X/[3Xm’X”] aXp +Xn[Xl7 8Xp 8Xm)



Orbital Angular Momentum

0 0

(L, L] = —FPeimenplX 0Xm,>e,, axp]
0 .0
— _hzeilmejnp([X/E?TaXn](?T
m p
0 .0
= _hzeilmejnp(XI[E)TaXn](?T
m p
1,

Dy’ D)

+ X,[Xi,
% Oxp~ OXm

2 N\ n~n
= —h eilmejnp(xldmn 8Xp — Xn(slp%)
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- NN
[L,’, LJ] — —hzeiImEan[X/ axm,Xn aXp]
.0 .0

— _hzeilmejnp([X/E?TaXn](?T

m p

.0 .0

= _hzeilmejnp(XI[E)TaXn](?T

m p

0

Dy’ D)

+ X,[Xi,
% Oxp~ OXm

2 N\ n~n
= —h eilmejnp(xldmn 8Xp — Xn(slp%)

0

2 N 2 n
= —h Emil€mpj X/ —h €pjn€pmiXn

0x,
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[Zi, ZJ]

_hze /€m 'X/— - h2€ 'ne m')?n—
mil€mpj 0%, pjn€pmi 8xm)

B2 (0ip0) — 6ij01p) Ky

. 0 .0
_hzeilmejnp [XI Dy’ Xn 8Xp]
0 0 o 0
B2 . S
h E/Imejnp([xl O ) Xn] 6Xp + Xn [Xla 8xp )
0 0 o, 0
B2 e (O w1 Sl —1——
h e/lmejnp(xl[(faxm7Xn] 6Xp + Xn[Xla (9Xp 8Xm)

0 . 0

2 A
—h 6//m€jnp(X/5mn—8Xp - Xn(slp%)

. 0 0

0 0

8—xp - (6jm5ni - 5]1 nm)(Xn )

OXm
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[Li L] = —hPeimejnplX 8?%’)?” 8(2,0]
— —hze,,mejnp([i,%,in] (,f(p + Xn[X/
- h2e,,mejnp(f,[%,fn]a% + XX,
— hze,,mejnp(ilémn& — fﬁm%)

. 0

= —hzemi/Gmij/8—)<p — h2€pjn€pmi)?n%)
.0
— —h2(5;p50' — 6U5IP)XI8—XP - (6jm5ni
0 0 0
_ _h2 > 5[ A._
(XJ 3Xl JXI aX/ 8XJ

- 5]1 nm)(Xn

+ 5,)')/(\/—
X



Orbital Angular Momentum

0

m

- Y
[Li,Lj] = _hzeilmejnp[xlax , Xn
. 0
— _hzeilmejnp([xl(f?Ta
. 0
= _hzeilmejnp(xl[8—7

m

2 N\ n~n
= —h eilmejnp(xldmn 8Xp — Xn(slp%)

e,

p

= (80 — 050 K5 ™

. 0
= hz(Xja—Xi%%

= ihEUkLk .

O0x,

2 2 ~
= —h Emil€mpj X/ Ix —h €pjn€pmiXn

]
PSP
0xy " Oxm Oxp
SR P A
Ox, " Oxp’ Oxm

0

%)
x)
o0

OXm

(5Jm5n/ 5Jl5nm)(xn

XIG—XJ—i_M

)

(7.42)
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_ . (7.43)
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0. (7.43)

Since the L; do not commute, they are not simultaneously

diagonalisable.



Orbital Angular Momentum

[zjv [i]LJ + j[[jv [,]
= /h(ej,k( Li+ LiLy))
= 0. (7.43)

Since the L; do not commute, they are not simultaneously
diagonalisable.However, [2 and any one of the L; can be
simultaneously diagonalised, since [[2, [;] = 0.

& L (LMLK%O

% /LzsF _5 e,\) L‘L

—_—

—
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We also have

(L, %] = ihejp, (7.44)
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[Li, %]

[LHﬁJ] —

ihe,-jkf(k ,
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We also have

(L, %] = ihejp, (7.44)
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[Li,Y %] = 2ihejuXif =0, (7.46)



Orbital Angular Momentum

We also have

(L, %] = ihejp, (7.44)
[zia ﬁj] — ihfijk[/jk ’ (745)
[Li,Y %] = 2ihejuXif =0, (7.46)
j
[Li,> Bl = 2ihejupipr=0. (7.47)



Orbital Angular Momentum

Now we have that 7 = ,/ZJ-)?JQ.
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Now we have that 7 = /> X?. We also have that
[Li7 ZJ )?12] = 0.



Orbital Angular Momentum

Now we have that 7 = /> X?. We also have that

[L;, > %] = 0. One can show from this that [L;, 7] = 0.



Orbital Angular Momentum

Now we have that 7 = /> X?. We also have that
[L;, > £?] = 0. One can show from this that [L;, 7] = 0. More

generally, one can show that [[,-, V/(r)] = 0 for any spherically
symmetric potential V/(r).



